The β1 Subunit Enhances Oxidative Regulation of Large-Conductance Calcium-activated K+ Channels

نویسندگان

  • Lindsey Ciali Santarelli
  • Jianguo Chen
  • Stefan H. Heinemann
  • Toshinori Hoshi
چکیده

Oxidative stress may alter the functions of many proteins including the Slo1 large conductance calcium-activated potassium channel (BKCa). Previous results demonstrated that in the virtual absence of Ca2+, the oxidant chloramine-T (Ch-T), without the involvement of cysteine oxidation, increases the open probability and slows the deactivation of BKCa channels formed by human Slo1 (hSlo1) alpha subunits alone. Because native BKCa channel complexes may include the auxiliary subunit beta1, we investigated whether beta1 influences the oxidative regulation of hSlo1. Oxidation by Ch-T with beta1 present shifted the half-activation voltage much further in the hyperpolarizing direction (-75 mV) as compared with that with alpha alone (-30 mV). This shift was eliminated in the presence of high [Ca2+]i, but the increase in open probability in the virtual absence of Ca2+ remained significant at physiologically relevant voltages. Furthermore, the slowing of channel deactivation after oxidation was even more dramatic in the presence of beta1. Oxidation of cysteine and methionine residues within beta1 was not involved in these potentiated effects because expression of mutant beta1 subunits lacking cysteine or methionine residues produced results similar to those with wild-type beta1. Unlike the results with alpha alone, oxidation by Ch-T caused a significant acceleration of channel activation only when beta1 was present. The beta1 M177 mutation disrupted normal channel activation and prevented the Ch-T-induced acceleration of activation. Overall, the functional effects of oxidation of the hSlo1 pore-forming alpha subunit are greatly amplified by the presence of beta1, which leads to the additional increase in channel open probability and the slowing of deactivation. Furthermore, M177 within beta1 is a critical structural determinant of channel activation and oxidative sensitivity. Together, the oxidized BKCa channel complex with beta1 has a considerable chance of being open within the physiological voltage range even at low [Ca2+]i.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BK Channel β1 Subunit Regulation of Calcium Handling and Constriction in Tracheal Smooth Muscle

The large conductance, calcium-activated (BK-type) potassium channels are regulators of voltage-dependent calcium entry in many cell types. The BK channel accessory β1 subunit promotes channel activation in smooth muscle and is required for proper tone in the vasculature and bladder. However, although BK channels have also been implicated in airway smooth muscle function, their regulation by th...

متن کامل

Distinct domains of the β1-subunit cytosolic N terminus control surface expression and functional properties of large-conductance calcium-activated potassium (BK) channels

The properties and function of large-conductance calcium- and voltage-activated potassium (BK) channels are modified by the tissue-specific expression of regulatory β1-subunits. Although the short cytosolic N-terminal domain of the β1-subunit is important for controlling both BK channel trafficking and function, whether the same, or different, regions of the N terminus control these distinct pr...

متن کامل

An extracellular domain of the accessory β1 subunit is required for modulating BK channel voltage sensor and gate

A family of tissue-specific auxiliary β subunits modulates large conductance voltage- and calcium-activated potassium (BK) channel gating properties to suit their diverse functions. Paradoxically, β subunits both promote BK channel activation through a stabilization of voltage sensor activation and reduce BK channel openings through an increased energetic barrier of the closed-to-open transitio...

متن کامل

Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dep...

متن کامل

Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2004